Let x be a Random Vector and A be a symmetric matrix of constants. If E(x)=μ and Var(x)=Σ, then the expectation of the quadratic form Q:=x⊺Ax is
E(Q)=μ⊺Aμ+tr(AΣ)
Let x=(X1,…,Xn)⊺ be a Random Vector and A be a symmetric matrix of constants.
If E(x)=θ=(θ1,…,θn)⊺ and Var(Xi)=μ2, E[(Xi−θi)3]=μ3, and E[(Xi−θi)4]=μ4, where i=1,2,…,n, then the variance of the quadratic form x⊺Ax is
Var(x⊺Ax)=(μ4−3μ22)a⊺a+2μ22tr(A2)+4μ2θ⊺A2θ+4μ3θ⊺Aa
where a is the column vector of diagonal elements of A.
If Xi∼N(θi,μ2),i=1,…,n and Xi‘s are independent, then
Var(x⊺Ax)=2μ22tr(A2)+4μ2θ⊺A2θ
If Xi∼N(0,1),i=1,…,n and Xi‘s are independent, then
Var(x⊺Ax)=2tr(A2)
Let X⊺∼N(0,σ2In), Q:=X⊺AX/σ2, where A is a Symmetric Matrix and rank(A)=r≤n, then
the MGF of Q is
M(t)=∏i=1r(1−2tλi)−1/2=∣I−2tA∣−1/2
where λi‘s are non-zero eigenvalue of A
Let X∼N(0,σ2In), Q=X⊺AX/σ2, where A is a Symmetric Matrix and rank(A)=r≤n, then
Q∼χ2(r)⇔A=Ak
where k∈N
Let X∼N(0,σ2In), Q1=X⊺AX/σ2,Q2=X⊺BX/σ2, where A,B are symmetric matrices, then
Q1,Q2 are independent if and only if AB=O
Let Q=Q1+Q2+⋯+Qk−1+Qk, where Q,Q1,Q2,…,Qk are quadratic forms in Random Sample from N(0,σ2)
If Q/σ2∼χ2(r),Q1/σ2∼χ2(r1),Q2/σ2∼χ2(r2),…,Qk−1/σ2∼χ2(rk−1) and Qk is non-negative, then