Sherman–Morrison formula can be used for updating fitted Least Square estimator
Let x^=(A⊺A)−1A⊺b be the least square estimator of Ax=b and the matrices with a new data be Aa=[Aa⊺] and ba=[bb]
Then, x^new=(Aa⊺Aa)−1Aa⊺ba=([A⊺a][Aa⊺])−1[A⊺a][bb]=(A⊺A+aa⊺)−1(A⊺b+ba)
Let P:=(A⊺A)−1 for convenience
Then, Pa:=(A⊺A+aa⊺)−1=P−1+a⊺PaPaa⊺P=(A⊺A)−1−1+a⊺(A⊺A)−1a(A⊺A)−1aa⊺(A⊺A)−1 by Sherman-Morrison formula
So, x^new=(A⊺A+aa⊺)−1(A⊺b+ba)=(A⊺A)−1A⊺b−1+a⊺PaPaa⊺PA⊺b+bPaa=x^−1+a⊺PaPaa⊺x^+bPaa
where Paa=Pa−1+a⊺PaPaa⊺Pa=1+a⊺PaPa+Paa⊺Pa−Paa⊺Pa=1+a⊺PaPa by expansion
∴x^new=x^−Paaa⊺x^+bPaa=x^+Paa(b−a⊺x^)
So, x^new can be obtained without additional inverse matrix calculation.
Facts
Sherman–Morrison formula is a special case of the Woodbury Formula