We want to find A satisfying the following expression with the symmetric and positive-definite condition
Hn=Hn−1+A⇒Δxn=(Hn−1+A)Δfn=Hn−1Δfn+AΔfn⇒AΔfn=Δxn−Hn−1Δfn by the definition
So, Solve the minimization problem with the symmetric and positive-definite conditions using method of Lagrange multipliers
min∣∣A∣∣w2=∣∣MAM⊺∣∣F2 subject to A=A⊺ and AΔfn=Δxn−Hn−1Δfn
where W=M⊺M:=Jk
Then, the solution is
A=Δfn⊺(W−1Δfn)(W−1Δfn)(Δxn−Hn−1Δfn)⊺+(Δxn−Hn−1Δfn)(W−1Δfn)⊺−(Δfn⊺(W−1Δfn))2Δfn⊺(Δxn−Hn−1Δfn)(W−1Δfn)(W−1Δfn)⊺
where W−1Δfn=Δxn by the definition
=Δfn⊺ΔxnΔxn(Δxn−Hn−1Δfn)⊺+(Δxn−Hn−1Δfn)Δxn⊺−(Δfn⊺Δxn)2Δfn⊺(Δxn−Hn−1Δfn)ΔxnΔxn⊺=(I−Δfn⊺ΔxnΔxnΔfn⊺)Hn−1(I−Δfn⊺ΔxnΔfnΔxn⊺)+Δfn⊺ΔxnΔxnΔxn⊺
Therefore, updating formula is
Hn=Hn−1+(I−Δfn⊺ΔxnΔxnΔfn⊺)Hn−1(I−Δfn⊺ΔxnΔfnΔxn⊺)+Δfn⊺ΔxnΔxnΔxn⊺
And by the Sherman–Morrison Formula,
Jn=Jn−1+Δfn⊺ΔxnΔfnΔfn⊺−Δxn⊺Jn−1ΔxnJn−1Δxn(Jn−1Δxn)⊺
and
xn+1=xn−Hnf(xn)