Definition

Ordinary Differential Equation of order 1

implicit form

explicit form

Facts

we say is a solution on some open interval if

  • is defined and differentiable on
  • for

The graph of is a solution curve

general solution

A solution containing an arbitrary contant

If we choose a specific for general solution, then we obtain a particular solution

Solutions

Separable ODE

Definition



Solution

can be solved by integration

Reduction to Separable ODE

If there is an ODE of the form , then let . Then :

Examples

&\cfrac{dy}{dx} = (y^{2} + 1)\\ &\cfrac{1}{y^{2}+1}dy = dx\\ &\int \cfrac{1}{y^{2}+1}dy = \int 1 dx = tan^{-1}(y) = x+C\\ &y = \tan(x+C) \end{aligned}$$ $$\begin{aligned} &2xy\frac{dy}{dx} = y^{2}-x^{2}\\ & \frac{dy}{dx} = \frac{1}{2}\left( \frac{y}{x} - \frac{x}{y} \right)\\ &\text{substitute}\ u:=\frac{y}{x} \Rightarrow u+x\frac{du}{dx} = \frac{dy}{dx}\\ & u+x\frac{du}{dx} = \frac{1}{2}\left( \frac{u^{2}-1}{u} \right)\\ & x\frac{du}{dx} = -\frac{1}{2}\left( \frac{u^{2}+1}{u} \right)\\ & \int\left( \frac{2u}{u^{2}+1} \right)du = -\int\frac{1}{x}dx\\ & \ln|u^{2}+1| = -\ln|x|+C\\ & |u^{2}+1| = \frac{1}{x}e^{C}\\ & u^{2}+1 = \pm \frac{1}{x}e^{C}\\ & \frac{y^{2}}{x^{2}} = \frac{1}{x}C -1\\ & y = \pm \sqrt{Cx - x^{2}} \end{aligned}$$Link to original

Linear ODE

Definition

A first-order ODE that can be brought into standard form :

Solution

Transclude of Homogeneous-Linear-ODE

Transclude of Non-Homegeneous-Linear-ODE

Transclude of Bernoulli-Equation

Exact ODE

Definition

A first-order ODE , written as is called an exact ODE if is exact.

Solution

If is exact, (for some ) and

If we only know ^[by Clairaut’s Theorem ] where is determined by and is determined by

Finding or

Differentiate  with respect to  

Substitute  in the original expression 



or, similar to above, find  in the expression below (where is determined by )

Examples

&\left( \frac{y}{x} + 4x \right)dx + \left( \ln x - 3 \right)dy = 0\\ &\frac{\partial \left( \frac{y}{x} + 4x \right)}{\partial y} = \frac{\partial \left( \ln x - 3 \right)}{\partial y} = \frac{1}{x}: \text{Exact ODE}\\ &\int\left( \frac{y}{x} + 4x \right)dx = y\ln|x|+2x^{2} + h(y) = f\\ &f_{y} = \ln|x|+h'(y) = \ln|x|-3 \Rightarrow h(y) = -3y + C\\ &f = y\ln|x|+2x^{2} - 3y = C \end{aligned}$$ # Facts > If $u(x, y)$ can be expressed the form of $du = Mdx + Ndy$^[result of [[Total differntial]]], $u$ is exact ^632ad5 > $Mdx + Ndy = du =0$ is exact $\Leftrightarrow \frac{\partial M}{\partial y} + \frac{\partial N}{\partial x} = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy$ (i.e. $M_y = N_x$)Link to original

Integrating Factors

Definition

Let be an ODE.

If there exist a function s.t. , then is called an integrating factor

Finding

If and , then . If depends only on ,

If and , similarly, . If depends only on ,

Examples

&e^{x} + (e^{x}\cot(y) + 2y \csc(y))y' = 0\\ &\underbrace{e^{x}}_{P}dx + \underbrace{(e^{x}\cot(y) + 2y \csc(y))}_{Q}dy = 0\\ &P_{y}=0,\quad Q_{x}=e^{x}\cot(y), \quad R(x) = \frac{Q_{x}-P_{y}}{P}=\cot(y), F(y)=\exp(\int\cot(y)dy)=\sin(y)\\ &\underbrace{\sin(y)e^{x}}_{P'}dx + \underbrace{(e^{x}\cos(y) + 2y)}_{Q'}dy = 0\\ &P'_{y} = Q'_{x} = \cos(y)e^{x}: \text{Exact ODE}\\ &\int p' dx = \sin(y)e^{x} + h(y) = f\\ &f_{y} = e^{x}\cos(y) + h'(y) = (e^{x}\cos(y) + 2y) \Rightarrow h'(y) = 2y \Rightarrow h(y)=y^{2}\\ &f = \sin(y)e^{x} + y^{2}= C \end{aligned}$$Link to original

Link to original