Definition
Ordinary Differential Equation of order 1
implicit form
explicit form
Facts
we say is a solution on some open interval if
- is defined and differentiable on
- for
The graph of is a solution curve
general solution
A solution containing an arbitrary contant
If we choose a specific for general solution, then we obtain a particular solution
Solutions
Separable ODE
Definition
Solution
can be solved by integration
Reduction to Separable ODE
If there is an ODE of the form , then let . Then :
Examples
&\cfrac{dy}{dx} = (y^{2} + 1)\\ &\cfrac{1}{y^{2}+1}dy = dx\\ &\int \cfrac{1}{y^{2}+1}dy = \int 1 dx = tan^{-1}(y) = x+C\\ &y = \tan(x+C) \end{aligned}$$ $$\begin{aligned} &2xy\frac{dy}{dx} = y^{2}-x^{2}\\ & \frac{dy}{dx} = \frac{1}{2}\left( \frac{y}{x} - \frac{x}{y} \right)\\ &\text{substitute}\ u:=\frac{y}{x} \Rightarrow u+x\frac{du}{dx} = \frac{dy}{dx}\\ & u+x\frac{du}{dx} = \frac{1}{2}\left( \frac{u^{2}-1}{u} \right)\\ & x\frac{du}{dx} = -\frac{1}{2}\left( \frac{u^{2}+1}{u} \right)\\ & \int\left( \frac{2u}{u^{2}+1} \right)du = -\int\frac{1}{x}dx\\ & \ln|u^{2}+1| = -\ln|x|+C\\ & |u^{2}+1| = \frac{1}{x}e^{C}\\ & u^{2}+1 = \pm \frac{1}{x}e^{C}\\ & \frac{y^{2}}{x^{2}} = \frac{1}{x}C -1\\ & y = \pm \sqrt{Cx - x^{2}} \end{aligned}$$Link to original
Linear ODE
Definition
A first-order ODE that can be brought into standard form :
Solution
Transclude of Homogeneous-Linear-ODETransclude of Non-Homegeneous-Linear-ODETransclude of Bernoulli-EquationExact ODE
Definition
A first-order ODE , written as is called an exact ODE if is exact.
Solution
If is exact, (for some ) and
If we only know ^[by Clairaut’s Theorem ] where is determined by and is determined by
Finding or
Differentiate with respect to
Substitute in the original expression
or, similar to above, find in the expression below (where is determined by )
Examples
&\left( \frac{y}{x} + 4x \right)dx + \left( \ln x - 3 \right)dy = 0\\ &\frac{\partial \left( \frac{y}{x} + 4x \right)}{\partial y} = \frac{\partial \left( \ln x - 3 \right)}{\partial y} = \frac{1}{x}: \text{Exact ODE}\\ &\int\left( \frac{y}{x} + 4x \right)dx = y\ln|x|+2x^{2} + h(y) = f\\ &f_{y} = \ln|x|+h'(y) = \ln|x|-3 \Rightarrow h(y) = -3y + C\\ &f = y\ln|x|+2x^{2} - 3y = C \end{aligned}$$ # Facts > If $u(x, y)$ can be expressed the form of $du = Mdx + Ndy$^[result of [[Total differntial]]], $u$ is exact ^632ad5 > $Mdx + Ndy = du =0$ is exact $\Leftrightarrow \frac{\partial M}{\partial y} + \frac{\partial N}{\partial x} = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy$ (i.e. $M_y = N_x$)Link to originalLink to originalIntegrating Factors
Definition
Let be an ODE.
If there exist a function s.t. , then is called an integrating factor
Finding
If and , then . If depends only on ,
If and , similarly, . If depends only on ,
Examples
&e^{x} + (e^{x}\cot(y) + 2y \csc(y))y' = 0\\ &\underbrace{e^{x}}_{P}dx + \underbrace{(e^{x}\cot(y) + 2y \csc(y))}_{Q}dy = 0\\ &P_{y}=0,\quad Q_{x}=e^{x}\cot(y), \quad R(x) = \frac{Q_{x}-P_{y}}{P}=\cot(y), F(y)=\exp(\int\cot(y)dy)=\sin(y)\\ &\underbrace{\sin(y)e^{x}}_{P'}dx + \underbrace{(e^{x}\cos(y) + 2y)}_{Q'}dy = 0\\ &P'_{y} = Q'_{x} = \cos(y)e^{x}: \text{Exact ODE}\\ &\int p' dx = \sin(y)e^{x} + h(y) = f\\ &f_{y} = e^{x}\cos(y) + h'(y) = (e^{x}\cos(y) + 2y) \Rightarrow h'(y) = 2y \Rightarrow h(y)=y^{2}\\ &f = \sin(y)e^{x} + y^{2}= C \end{aligned}$$Link to original