Definition
Let Pdx+Qdy=0 be an ODE.
If there exist a function F s.t. FPdx+FQdy=0,
then F(x,y) is called an integrating factor
Finding
Pdx+Qdy=0⇒FPdx+FQdy=0⇒∂y∂FP=∂x∂FQ⇒FyP+FPy=FxQ+FQx
If F=F(x) and Fy=0, then FPy=FxQ+FQx⇒dxdFQ=F(Py−Qx)⇒dxdFF1=Q1(Py−Qx)=R(x).
If R depends only on x, ln∣F∣=∫Rdx+C⇒F(x)=exp(∫R(x)dx)
If F=F(y) and Fx=0, similarly, P1(Qx−Py)=R∗(y).
If R∗ depends only on y, F∗(y)=exp(∫R∗(y)dy)
Examples
&e^{x} + (e^{x}\cot(y) + 2y \csc(y))y' = 0\\
&\underbrace{e^{x}}_{P}dx + \underbrace{(e^{x}\cot(y) + 2y \csc(y))}_{Q}dy = 0\\
&P_{y}=0,\quad Q_{x}=e^{x}\cot(y), \quad R(x) = \frac{Q_{x}-P_{y}}{P}=\cot(y), F(y)=\exp(\int\cot(y)dy)=\sin(y)\\
&\underbrace{\sin(y)e^{x}}_{P'}dx + \underbrace{(e^{x}\cos(y) + 2y)}_{Q'}dy = 0\\
&P'_{y} = Q'_{x} = \cos(y)e^{x}: \text{Exact ODE}\\
&\int p' dx = \sin(y)e^{x} + h(y) = f\\
&f_{y} = e^{x}\cos(y) + h'(y) = (e^{x}\cos(y) + 2y) \Rightarrow h'(y) = 2y \Rightarrow h(y)=y^{2}\\
&f = \sin(y)e^{x} + y^{2}= C
\end{aligned}$$