Definition
g(y)y′=f(x)
g(y)dy=f(x)dx
Solution
can be solved by integration
∫g(y)dy=∫f(x)dx+C
Reduction to Separable ODE
If there is an ODE of the form y′=f(xy), then let xy=u.
Then y=xu⇒y′=u′x+u⇒u′x+u=f(u)⇒f(u)−udu=xdx:
Examples
&\cfrac{dy}{dx} = (y^{2} + 1)\\
&\cfrac{1}{y^{2}+1}dy = dx\\
&\int \cfrac{1}{y^{2}+1}dy = \int 1 dx = tan^{-1}(y) = x+C\\
&y = \tan(x+C)
\end{aligned}$$
$$\begin{aligned}
&2xy\frac{dy}{dx} = y^{2}-x^{2}\\
& \frac{dy}{dx} = \frac{1}{2}\left( \frac{y}{x} - \frac{x}{y} \right)\\
&\text{substitute}\ u:=\frac{y}{x} \Rightarrow u+x\frac{du}{dx} = \frac{dy}{dx}\\
& u+x\frac{du}{dx} = \frac{1}{2}\left( \frac{u^{2}-1}{u} \right)\\
& x\frac{du}{dx} = -\frac{1}{2}\left( \frac{u^{2}+1}{u} \right)\\
& \int\left( \frac{2u}{u^{2}+1} \right)du = -\int\frac{1}{x}dx\\
& \ln|u^{2}+1| = -\ln|x|+C\\
& |u^{2}+1| = \frac{1}{x}e^{C}\\
& u^{2}+1 = \pm \frac{1}{x}e^{C}\\
& \frac{y^{2}}{x^{2}} = \frac{1}{x}C -1\\
& y = \pm \sqrt{Cx - x^{2}}
\end{aligned}$$