A first-order ODE M(x,y)+N(x,y)y′=0, written as Mdx+Ndy=0 is called an exact ODE if Mdx+Ndy=0 is exact.
Solution
If Mdx+Ndy=0 is exact, Mdx+Ndy=du=∂x∂udx+∂y∂udy (for some u(x,y))
⇒du=0 and u(x,y)=c
If we only know ∂y∂M=∂y∂∂x∂u=∂x∂∂y∂u=∂x∂N ^[by Clairaut’s Theorem fxy(a,b)=fyx(a,b)]
M=∂x∂u→u=∫Mdx+k(y)N=∂y∂u→u=∫Ndy+l(y)
where k is determined by ∂y∂u and l is determined by ∂x∂u
Finding k(y) or l(x)
Differentiate u=∫Mdx+k(y) with respect to y
N=∂y∂u=∂y∂(∫Mdx+k(y))⇒∂y∂k(y)=N−∂y∂(∫Mdx)⇒k(y)=∫(N−∂y∂(∫Mdx))∂y
Substitute k(x) in the original expression u=∫Mdx+k(y)
u=∫Mdx+∫(N−∂y∂(∫Mdx))∂y
or, similar to above, find l(x) in the expression below
N=∂y∂u→u=∫Ndy+l(x) (where l is determined by ∂x∂u)
Examples
&\left( \frac{y}{x} + 4x \right)dx + \left( \ln x - 3 \right)dy = 0\\
&\frac{\partial \left( \frac{y}{x} + 4x \right)}{\partial y} = \frac{\partial \left( \ln x - 3 \right)}{\partial y} = \frac{1}{x}: \text{Exact ODE}\\
&\int\left( \frac{y}{x} + 4x \right)dx = y\ln|x|+2x^{2} + h(y) = f\\
&f_{y} = \ln|x|+h'(y) = \ln|x|-3 \Rightarrow h(y) = -3y + C\\
&f = y\ln|x|+2x^{2} - 3y = C
\end{aligned}$$
# Facts
> If $u(x, y)$ can be expressed the form of $du = Mdx + Ndy$^[result of [[Total differntial]]], $u$ is exact
^632ad5
> $Mdx + Ndy = du =0$ is exact $\Leftrightarrow \frac{\partial M}{\partial y} + \frac{\partial N}{\partial x} = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy$ (i.e. $M_y = N_x$)