Definition

A Markov chain is a Stochastic Process that satisfies Markov Property. It consists of a set of states and a Transition Probability Matrix

Summary

Conditions and Properties of Markov Chain (Finite States)

ExampleFiniteIRRAperiodicity^[a unique Limiting Distribution]^[a unique Stationary Distribution]^[Ergodic Theorem]^[Ergodicity]
OXXXXXX
Identity/Block matrixOXOXXXX
Exchange matrixOOXXOOX
Ergodic Markov ChainOOOOOOO
flowchart LR
  mc[HMC] --> finite
  
  subgraph finiteness
    finite([finite])
  end
  
  finite --> finite_mc
  finite_mc --> irreducible
  finite_mc --> reducible
  
  subgraph Irreducibility
    irreducible([irreducible])
    reducible([reducible])
  end
  irreducible --> irr_mc[Irreducible MC]
  reducible -->|divide|irr_mc

  irr_mc ---|holds|egt([Ergodic Theorem])
  irr_mc --> aperiodic
  
  subgraph Aperiodicity
    aperiodic([aperiodic])
  end
  
  aperiodic --> ergmc[Ergodic MC]

Conditions and Properties of Markov Chain (Infinite States)

IRRNatureAperiodicity^[a unique Limiting Distribution]^[a unique Stationary Distribution]^[Ergodic Theorem]^[Ergodicity]
OTransientcan’t defineXXXX
ONull recurrentno matterXXXX
OPositive recurrentXXOOX
OPositive recurrentOOOOO
flowchart LR
  mc[HMC]
  mc --> irreducible
  mc --> reducible
  
  subgraph Irreducibility
    irreducible([irreducible])
    reducible([reducible])
  end
  
  irr_mc[Irreducible MC]
  irreducible --> irr_mc
  reducible -->|divide|irr_mc
  
  irr_mc --> pr
  irr_mc --> nr
  irr_mc --> tr
  
  subgraph Recurrence
    pr([positive recurrent])
    nr([null recurrent])
    tr([transient])
  end
    
  pr_mc[Recurrent MC]
  pr --> pr_mc
  pr_mc --> aperiodic

  egt([Ergodic Theorem])
  pr_mc ---|holds|egt

  subgraph Aperiodicity
    aperiodic([aperiodic])
  end
  
  aperiodic --> ergmc[Ergodic MC]