Definition
(S,P)
A Markov chain is a Stochastic Process {Xt} that satisfies Markov Property.
It consists of a set of states S and a Transition Probability Matrix P
Summary
Conditions and Properties of Markov Chain (Finite States)
flowchart LR
mc[HMC] --> finite
subgraph finiteness
finite([finite])
end
finite --> finite_mc
finite_mc --> irreducible
finite_mc --> reducible
subgraph Irreducibility
irreducible([irreducible])
reducible([reducible])
end
irreducible --> irr_mc[Irreducible MC]
reducible -->|divide|irr_mc
irr_mc ---|holds|egt([Ergodic Theorem])
irr_mc --> aperiodic
subgraph Aperiodicity
aperiodic([aperiodic])
end
aperiodic --> ergmc[Ergodic MC]
Conditions and Properties of Markov Chain (Infinite States)
flowchart LR
mc[HMC]
mc --> irreducible
mc --> reducible
subgraph Irreducibility
irreducible([irreducible])
reducible([reducible])
end
irr_mc[Irreducible MC]
irreducible --> irr_mc
reducible -->|divide|irr_mc
irr_mc --> pr
irr_mc --> nr
irr_mc --> tr
subgraph Recurrence
pr([positive recurrent])
nr([null recurrent])
tr([transient])
end
pr_mc[Recurrent MC]
pr --> pr_mc
pr_mc --> aperiodic
egt([Ergodic Theorem])
pr_mc ---|holds|egt
subgraph Aperiodicity
aperiodic([aperiodic])
end
aperiodic --> ergmc[Ergodic MC]