Now we can express
u=u⊺Δfn(Δxn−Hn−1Δfn) and uu⊺=(u⊺Δfn)2(Δxn−Hn−1Δfn)(Δxn−Hn−1Δfn)⊺
Since uu⊺ satisfying uu⊺Δfn=Δxn−Hn−1Δfn is unique(because u(u⊺Δfn)=⟨u⊺,Δfn⟩u is the scaling of u),
we can get (u⊺Δfn)2 by multiplying Δfn⊺ to the both side
(u⊺Δfn)2=Δfn⊺uu⊺Δfn=Δfn⊺(Δxn−Hn−1Δfn)
by substituting (u⊺Δfn)2 to original expression,
uu⊺=Δfn⊺(Δxn−Hn−1Δfn)(Δxn−Hn−1Δfn)(Δxn−Hn−1Δfn)⊺
Therefore,
Hn=Hn−1+(Δxn−Hn−1Δfn)⊺Δfn(Δxn−Hn−1Δfn)(Δxn−Hn−1Δfn)⊺ Since the denominator is a scalar
and
xn+1=xn−Hnf(xn)