Definition Method for orthogonalizing a set of vectors. Computation Given a1,a2,…,an+1∈Rn a1: A1:=a1,q1=∣∣A1∣∣A1 a2: A2:=(a2−(q1⊺a2)q1)⊥q1,q2=∣∣A2∣∣A2 a3: A3:=(a3−(q1⊺a3)q1−(q2⊺a3)q2)⊥q1,q2,q3=∣∣A3∣∣A3 ak: Ak:=(ak−∑i=1k−1(qi⊺ak)qi)⊥q1,q2,…,qk−1,qk=∣∣Ak∣∣Ak Where (qi⊺ak)qi means the projection of the vector ak onto the vector space of Ai. Therefore, it can be expressed using projAi(ak) a1: A1:=a1,q1=∣∣A1∣∣A1 a2: A2:=(a2−projA1(a2))⊥q1,q2=∣∣A2∣∣A2 a3: A3:=(a3−projA1(a3)−projA2(a3))⊥q1,q2,q3=∣∣A3∣∣A3 ak: Ak:=(ak−∑i=1k−1projAi(ak))⊥q1,q2,…,qk−1,qk=∣∣Ak∣∣Ak