Let L(y)=y′′p(x)y′+q(x)y=0⊛ have a regular singular point at x0=0⇒x2L(y)=x2y′′+x(xp(x))y′+(x2q(x))y=0⇒x2L(y)=x2y′′+x(n=0∑∞pnxn)y′+(n=0∑∞qnxn)y=0
Since we can express coefficients as power series form, above expression satisfies x2y′′+xp0y′+q0y≈0^[the corresponding Euler-Cauchy equation] around 0
So, let’s assume the solution y=xrn=0∑∞anxn with a0=0 form
like a solving process of Euler-Cauchy Equations
There exists at least one solution of the form y=y1=xrn=0∑∞anxn^[Frobenius type solution]
Assume y=xrn=0∑∞anxn and fit in ⊛
Then, we get L(y)=a0F(r)xr+n=1∑∞{F(r+n)an+k=0∑n−1ak(r+k)pn−k+qn−k}xr+n=0
where F(r)=r(r−1)+p0r+q0=0 is called indicial equation of the ODE
Now, we can find an from a0,a1,…,an−1 if F(n+r)=0
So, an is a function of r
Considering the coefficient of xr^[first non-zero coefficient],
we obtain the indicial equation F(r)=r(r−1)+p0r+q0=0
If r1>r2 (real), r1−r2∈/N
∃y2 s.t. y1=xr1n=0∑∞anxn,y2=xr2n=0∑∞bnxn
If r1=r2 (real)
y1=xr1n=0∑∞anxn,y2=y1lnx+xr1n=1∑∞bnxn
For euler-cauchy equation, L(xr)=(r−r1)2xr=0 at r=r1, L(xrlnx)=L(∂r∂xr)=∂r∂L(xr)=2(r−r1)xr+(r−r1)2xrlnxr=r1=0
For general, y2=∂r∂(xrn=0∑∞an(r)xn)r=r1=xr1lnxn=0∑∞anxn+xr1n=1∑∞bnan′(r1)xn