Definition
x2y′′+axy′+by=0(x=0)
Solution
Assume the solutions y=xm form
then x2m(m−1)xm−2+axmxm−1+bxm=m(m−1)+am+b=0
⇒m2+(a−1)m+b=0^[auxiliary equation]
m=2(1−a)±(1−a)2−4b=21−a±4(1−a)2−b
Two Distinct Real Roots m1,m2
y1=xm1,y2=xm2
General Solution
y=c1xm1+c2xm2,c1,c2∈R
Multiple Real Roots m=21−a
y1=xm=x21−a
By using the Reduction of Order, we can get y2.
U=y121e−∫pdx=y121e−∫xadx=x1−a1e−alnx=x1−a1x−a=x1,p=x2ax=xa
⇒y2=uy1=y1∫Udx=xmlnx(x>0)
General Solution
y=c1xm+c2xmlnx,c1,c2∈R
Complex Roots m=μ±iν,μ,ν∈R
⇒y^1=xμ+iν=xμxiν=xμ(elnx)iν=xμeiνlnx=xμ(cos(νlnx)+isin(νlnx))
y^2=xμ−iν=xμx−iν=xμ(elnx)−iν=xμe−iνlnx=xμ(cos(νlnx)−isin(νlnx))
⇒y1=2y^1+y^2=xμcos(νlnx)
y2=2iy^1−y^2=xμsin(νlnx)
General Solution
y=Axμcos(νlnx)+Bxμsin(νlnx),A,B∈R
Examples
x2y′′−3xy′−12y=0substitute xm:=yx2(xm)′′−3x(xm)′−12(xm)=0m(m−1)xm−3mxm−12xm=0m2−4m−12=0⇒(m−6)(m+2)=0⇒m=6 or −2y=C1x6+C2x−2