Since each element of B is (n−1)-order polynomial about λ
So we can express B=λn−1Bn−1+λn−2Bn−2+⋯+λ1B1+B0
Then, B(λI−A)=λnBn−1+λn−1(Bn−2−Bn−1A)+⋯+λ(B0−B1A)−B0A=∑i=0naiλiI by using the two above expansions
∴Bn−1=anI,(Bn−2−Bn−1A)=an−1I,(B0−B1A)=a1I,−B0A=a0I