Definition

Solution

Want to hold: 



Let  and fix , then ^[integrating factor] 

Now, the original ODE becomes 

Let for simplicity

Examples

&\frac{dy}{dx} = \frac{x^{3}-2y}{x}\\ &\frac{dy}{dx} + \frac{2}{x}y = x^{2}\\ &h(x) := \int\frac{2}{x}dx = 2\ln|x| \Rightarrow \mu(x) := C\exp(\ln|x^{2}|)= Cx^2\\ &\frac{d}{dx}(Cx^{2}y) = Cx^{4}\\ &Cx^{2}y = C\int x^{4}dx = \frac{C}{5}x^{5} + C_{1}\\ &y = \frac{1}{5}x^{3} + \frac{C_{1}}{x^{2}} \end{aligned}$$