Definition Consider a Normal Space (X,T) and disjoint closed subsets A,B⊂X of X. Then, there exists a continuous map f:X→[0,1] s.t. f(x)={01x∈Ax∈B. ∀A,B⊂X s.t. (X∖A),(X∖B)∈T and A∩B=∅⟹∃f∈C0(X,[0,1]) s.t. f(x)={01x∈Ax∈B