Definition Scalar Triple Product a⋅(b×c)=b⋅(c×a)=c⋅(a×b) The signed volume of the parallelepiped defined by the three vectors. Vector Triple Product a×(b×c)=b(a⋅c)−c(a⋅b) Facts a⋅(b×c)=det[a,b,c] proof (u×v)⋅w=(u2v3−u3v2,−(u1v3−u3v1),u1v2−u2v1)⋅w=[w1(u2v3−u3v2,−w2(u1v3−u3v1),w3(u1v2−u2v1)] =w1u2v2u3v3−w2u1v1u3v3+w3u1v1u2v2=w1u1v1w2u2v2w3u3v3=det[u,v,w]