Definition

sin(x)=2ieix−e−ix
cos(x)=2ieix+e−ix
tan(x)=cos(x)sin(x)=eix+e−ixeix−e−ix=e2ix+1e2ix−1
Properties
Simple Algebraic Values
| radius | angle | sin(θ) | cos(θ) | tanθ |
|---|
| 0 | 0∘ | 0 | 1 | 0 |
| 6π | 30∘ | 21 | 2(3) | 33 |
| 4π | 45∘ | 2(2) | 2(2) | 1 |
| 3π | 60∘ | 2(3) | 21 | 3 |
| 2π | 90∘ | 1 | 0 | |
Identities
Parity
sin(−x)=−sin(x)
cos(−x)=cos(x)
tan(−x)=−tan(x)
csc(−x)=−csc(x)
sec(−x)=sec(x)
cot(−x)=−cot(x)
Periods
sin(x+2kπ)=sin(x)
cos(x+2kπ)=cos(x)
tan(x+kπ)=tan(x)
csc(x+2kπ)=csc(x)
sec(x+2kπ)=sec(x)
cot(x+kπ)=cot(x)
where k∈Z
Pythagorean Identity
sin2(x)+cos2(x)=1
tan2(x)+1=sec2(x)
cot2(x)+1=csc2(x)
Sum
sin(x+y)=sin(x)cos(y)+cos(x)sin(y)
cos(x+y)=cos(x)cos(y)−sin(x)sin(y)
tan(x+y)=1−tan(x)tan(y)tan(x)+tan(y)
Difference
sin(x−y)=sin(x)cos(y)−cos(x)sin(y)
cos(x−y)=cos(x)cos(y)+sin(x)sin(y)
tan(x−y)=1+tan(x)tan(y)tan(x)−tan(y)
sin(2x)=2sin(x)cos(x)
cos(2x)=1−2sin2(x)=cos2(x)−sin2(x)
tan(2x)=1−tan2(x)2tan(x)
sin2(2θ)=21−cos(θ)
cos2(2θ)=21+cos(θ)
tan2(2θ)=1+cos(θ)1−cos(θ)
eix=cos(x)+isin(x)
e−ix=cos(x)−isin(x)
sin(x)=2ieix−e−ix
cos(x)=2eix+e−ix
Derivatives and Antiderivatives
| f(x) | dxdf(x) | ∫f(x)dx |
|---|
| sin(x) | cos(x) | −cos(x)+C |
| cos(x) | −sin(x) | sin(x)+C |
| tan(x) | sec2(x) | −ln∥cos(x)∥+C |
| csc(x) | −csc(x)cot(x) | ln∥csc(x)−cot(x)∥+C |
| sec(x) | sec(x)tan(x) | −ln∥sec(x)−tan(x)∥+C |
| cot(x) | −csc2(x) | ln∥sin(x)∥+C |
| arcsin(x)=sin−1(x) | 1−x21 | |
| arccos(x)=cos−1(x) | −1−x21 | |
| arctan(x)=tan−1(x) | x2+11 | |