Definition
y′′=ay′+by=0,a,b∈R
Solution
Assume the solutions will be y=eλx form
then λ2eλx+aλeλX+beλx=(λ2+aλ+b)>0eλx=0
⇒λ2+aλ+b=0^[characteristic equation]
λ1,2=2−a±a2−4b⇒y1=eλ1x, y2=eλ2x are solutions
Two Distinct Real Roots λ1=λ2
General Solution
y=c1eλ1x+c2eλ2x,c1,c2∈R
Multiple Real Roots λ=−2a
y1=eλx=e−2ax
by using the Reduction of Order, we can get y2.
U=y121e−∫pdx=e−ax1e−ax=1
⇒y2=uy1=y1∫Udx=e−2axx=xeλx
General Solution
y=c1eλx+c2xeλx=(c1+c2x)eλx,c1,c2∈R
Complex Roots λ1=−2a+iω,λ2=−2a−iω
⇒⇒y^1=e−2axe+iωx=e−2ax(cosωx+isinωx)y^2=e−2axe−iωx=e−2ax(cosωx−isinωx)y1=2y^1+y^2=e−2axcosωxy2=2iy^1−y^2=e−2axsinωx
General Solution
y=Ae−2axcosωx+Be−2axsinωx,A,B∈R
Examples
y′′+5y′+6y=0assume y=eλxλ2+5λ+6=0⇒(λ+3)(λ+2)=0⇒λ=−3 or −2y=c1e−3x+c2e−2x