Definition
for given y′′+p(x)y′+q(x)y=0
If y1 is a solution, let y2=y:=uy1
Then, y′=u′y1+uy1′,y′′=u′′y1+2u′y1′+uy1′′
Substitute y′,y′′ in the original expression y′′+p(x)y′+q(x)y=0
(u′′y1+2u′y1′+uy1′′)+p(x)(u′y1+uy1′)+q(x)y=0
⇒u′′y1+u′(2y1′+py1)+u=0(∵ y1=sol)(y1′′+py1′+qy1)=0
⇒u′′y1+u′(2y1′+py1)=0
⇒u′′+u′(y12y1′+py1)=0
⇒U’+U(y12y1′+py1+p)=0,where U(x):=u′(x)
⇒UdU−(y12y1′+py1+p)dx
⇒ln∣U∣=−∫(y12y1′+py1+p)dx=−2ln∣y1∣−∫pdx
⇒U=y121e−∫pdx
∴y2=uy1=y1∫Udx