If a function f(x)=n=0∑∞an(x−c)nconverges on [a,b], then
f∈R[a,b], and
∫abf(x)dx=n=0∑∞an∫ab(x−c)ndx
where R[a,b] is a set of integrable function on a [a,b]
Improper Integral of Power Series
If a function f(x)=n=0∑∞an(x−c)n, and the power series n=0∑∞n+1an(b−c)n+1converges on [a,b), then
f is improper integrable on the [a,b), and
∫abf(x)dx=n=0∑∞an∫ab(x−c)ndx