Repeated (real) root with less eigenvectors: λ1=⋯=λn,ξ(1),…,ξ(k),k<n
Let λ1=λ2=λ,ξ is only eigen vector, then x(1)=ξeλt (with Aξ=λξ)
Try x(2)=ξteλt+ηeλt, where generalized eigenvector η is to be determined
Then (x(2))′=ξeλt+ξλteλt+ηλeλt=Ax(2)=A(ξteλt+ηeλt)⇒(A−λI)η=ξ⇒(A−λI)2η=0Aξ−λIξ⇒(A−λI)2=0
Triple roots: x(3)=ξ2t2eλt+ηteλt+ζeλt, where ζ is to be determined