Definition y′+p(x)y=r(x)=0 ydy=−p(x)dx Solution General solution is y=∑k=1nckyk where {yi∣i=1,2,…,n} is linearly independent ln∣y∣=−∫p(x)dx+c ⇒∣y∣=exp(−∫p(x)dx)eC=Cexp(−∫p(x)dx) ⇒y=Cexp(−∫p(x)dx) Facts linear ODE is homogeneous ⇔r(x)=0⇔y=0 is a solution of linear ODE