Definition L(y)=y(n)+an−1y(n−1)+⋯+a1y′+a0y=0 on I Solution Try y=eλx⇒L(eλx)=(λn+an−1λn−1+⋯++a1λ+a0)^[characteristic equation] =0eλx=0 If λ=λi for some i=1,…,n ⇒L(eλx)=0⇒eλix is a solution for i=1,…,n simple distinct real roots λ1,…,λm⇒y=eλ1x,…,eλmx simple complex roots λ=γ±iω⇒y=eγxcos(ωx),eγxsin(ωx) repeated real root λ⇒y=eλx,xeλx,…,xs−1eλx repeated complex root λ=γ±iω⇒y=eγxcos(ωx),xeγxcos(ωx),…,xs−1eγxcos(ωx),eγxsin(ωx),xeγxsin(ωx),…,xs−1eγxsin(ωx)