Definition
No Censoring Case
Kolmogorov–Smirnov Test
Definition
The Kolmogorov–Smirnov test (KS test) is a non-parametric test for the equality of continuous, distribution functions.
The Kolmogorov–Smirnov test statistic for a given CDF is defined as where is the Empirical Distribution Function based on the i.i.d. random variables .
Link to original
Cramer-von Mises Test
Definition
The Cramer-von Mises test is a non-parametric test for the equality of continuous, distribution functions.
The Cramer-von Mises test statistic for a given CDF is defined as where is the Empirical Distribution Function based on the i.i.d. random variables .
Link to original
Censoring Case
Generalized Kolmogorov–Smirnov Test
The generalized Kolmogorov–Smirnov test uses Kaplan-Meier Estimator instead of Empirical Distribution Function used for Kolmogorov–Smirnov Test where is the Empirical Distribution Function based on the i.i.d. random variables .
Generalized Cramer-von Mises Test
The generalized Cramer-von Mises test uses Kaplan-Meier Estimator instead of Empirical Distribution Function used for Cramer-von Mises Test where is the Empirical Distribution Function based on the i.i.d. random variables .
