Definition

No Censoring Case

Kolmogorov–Smirnov Test

Definition

The Kolmogorov–Smirnov test (KS test) is a non-parametric test for the equality of continuous, distribution functions.

The Kolmogorov–Smirnov test statistic for a given CDF is defined as where is the Empirical Distribution Function based on the i.i.d. random variables .

Link to original

Cramer-von Mises Test

Definition

The Cramer-von Mises test is a non-parametric test for the equality of continuous, distribution functions.

The Cramer-von Mises test statistic for a given CDF is defined as where is the Empirical Distribution Function based on the i.i.d. random variables .

Link to original

Censoring Case

Generalized Kolmogorov–Smirnov Test

The generalized Kolmogorov–Smirnov test uses Kaplan-Meier Estimator instead of Empirical Distribution Function used for Kolmogorov–Smirnov Test where is the Empirical Distribution Function based on the i.i.d. random variables .

Generalized Cramer-von Mises Test

The generalized Cramer-von Mises test uses Kaplan-Meier Estimator instead of Empirical Distribution Function used for Cramer-von Mises Test where is the Empirical Distribution Function based on the i.i.d. random variables .