Definition

The equation is linear if and non-linear if

Solution

We can reduce it to a Linear ODE by substituting Then, Since the form of the equation is Non-Homegeneous Linear ODE, we can find

Examples

&y' + xy = \frac{x}{y}\\ &\text{substitute}\ u:=y^{2} \Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{u}}\frac{du}{dx}\\ &\frac{1}{2\sqrt{u}}\frac{du}{dx} + x\sqrt{u} = \frac{x}{\sqrt{u}} \Rightarrow \frac{du}{dx} + 2xu = 2x\\ &\text{By the solution of separable ODE}\\ &u = 1-\exp(-x^{2})C\\ &\Rightarrow y^{2} = 1-\exp(-x^{2})C \end{aligned}$$